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SUMMARY

Recent proposals by Gomory and others for solving linear
programs involving integer—valued variables appear sufficiently
promising that it is worthwhile to systematically review and
classify problems that can be reduced to this class and thersby
solved. Historically non-linear, non—convex and combinatorial
problems are areas where classical mathematics almost always
fails. It is therefore significant that the reduction can be
made for problems involving multiple dichotomies and k-fold
alternatives which include problems with discrete variables,
non—linear separable minimizing functions, conditional con-
straints, global minimum of general concave functions and
combinatorial problems such as the fixed charge problem,
traveling salesman problem, orthogonal latin square problems,

and map co.oring problems.
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CN THE SIGNIFICANCE OF SCLVING LINEAR PRCGRAMMING PIOBLEMS
WITH SOME INTEGER VARIABLLS

George B. Duntzi

Kecently R. Gomory developed 8 theory cof sutomatically
generating ''cutting planes'" which permits efficient soclution
of linear programs in integers in 8 finite number of steps
[1]. Tnis approach has been generalized to a case where some
varisbtles sre continuocus and some are constrained to te inte_ers,
ty; E.M.L, Beale [2], 8nd in @ more direct way vy Gomcry [3], see
alsc [ 8]. Smsll scale test problems have Leen Buccessfully
ccmputed. The procedure {8 sc promising that it 18 relevant
to systemqtically review and classify provlems that cen be reduced
to this clsss. We shsll show that a host of difficult, i‘ndeed
seeminzly impossivble prctlems of 8 non-linear, non—onvex, and
combinatorial chsreacter sre now open for direct attack.

The cutting plane approach wes first proposed and its
power demonstrated vty successafully solving an example of a8
largze scale trasveling selesman problem by Fulkerson, Johnson,
and the author [5]. Manne and Markowitz explored this technique
further 1n [ 6] end polnted how it could vte applled tc solve
problems involving non-linear obJjective forms (sepsrable in
the variables but not convex),

In Section I we shiall zive 8 enersl description of the
cutting plene approsch and then descrite the principles for

sclving seversl genersl type problems. In the later sections
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these will e applied to seversl well-known protlems. The
cutline for the pasper 13 &s fcllows:
Section I: Genersl l:iinciples
(a) Trhe Metl.cd.
(L) D!chotomlies.
(c) k—fcld Alternstives.
(d) Sclectlen from meny psirs of resions.
(e) Discrete Varisble Protlems.
(f) Non-=Lines:r Cbjective Frotlems.
() Conditionel Ccnstreints.
(h) Findin:; a _-lotal minimum of 8 concave function.
section [1: ixed Ch.r,e Problem.
Section [1I: The Travelin; Salesman Predblem.

section IV: The Cirthozonal-—-latin .‘quare ircvlem.

section V: Fcur-Colorin: a Msp (!f possible).
It Genersal ! !nciples
(8) The Mcthod: The cuttings plene methoa consists in

first solviny the lines: proj:amning; provlem wlithout the

{nteger constisints. [f the optimum sclution h ppens to

gatlisfy these conditions all !8 well. !f not then sdditional
linear Inequality constraints (called cutting planes) are added to

trne system in such a ws, 33 tc remove the non-8dm!ssitle ext:eme
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point solution and yet retain all admissible solutions (e.g.,
those having integer values). In principle, that this could be
dene has been known for sometime. For example,a plane that goes
through all neighboring vertices of the non—admissible extreme
point can be used as cutting plane in the case where all
variablas must have values O or 1. However such a procedure
has been regarded as prnbably too slow and actual problems
until recently were solved using more efficient cutting planes
whose validity depended on pecial arguments. This wealmess
has been overcome by the recent proposals which generate cutting
planes in an efficient manner. It is the author's belief that now it
is only a2 matter of time before a subroutine for integer and partial
integer solutions will be part of electronic computer simplex
codec.

Let us now turn to the main subject of this paper, types
of problems that are reducible to linear programs some or all
of whose variables are integer-valued.

Quite often papers will appear in the literature which
formulate a problem in L.P. (linear programming) form e; zept
for certain side conditions like X)Xy = O or the sum of terms
of this type such as X)X, + x,-xu = 0 which imply for nonnegative
variables that at least one variable of each pair rmust be zereo.
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Superficially this seems to place the protlem in the area of
quadratic prozrammin.;. However the presence cf such conditions
can entirely change the character of the provlem (as we shall
see in a moment ) and should serve a warnin: to those who would
apply willy-nilly a ieneral non-linear programming method. If
we sraph the conditions x;,:x, = 0, x; >0, x5 >0, x; +x; > 1,
the douvtle lines depict the domain of feasitle solutions. It

will te noted that 1t has two disconnected parts. If there are

~.

~

|
— ——AL—-—*-——-;——_
!(

many such dichotomies in a larger problem it can result in a

domsin of feasible solutions with many disconnected parts cr
connected non—convex reglons. For example, k pairs of variatles
in which one is zero mizht lead -o Ek disconnected parts. Usual
mathematical approaches can gJuarantee at test a local optimum
solution to such problemg i1.e., 8 solution which is optimum cnly
over some connected convex part.

It has teen well known that vy special devices that the
local optimum solutions could iLe avoided Iin many cases bty the
introduction of integzer valued variables but this has only been

of passing interest until the recent developments rendered

this approach practical. Our purpose here will be to
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systematize this knowledge

(o) Dichotomies: Let us bezin with the important class of

protlems that have "either—or'" conditions. ior such a protlem

to te difficult computationally there must te many set3 of such

conditicns., Let us focus our attention on one of them, say

(1) EITHER G(Xy,)X5p0ee,x ) > 0

n

O

(2) OR H(x X 0ee,x ) 2

must hold for values of (xl,xe,...,xn) chosen over some set O,

We do not exclude the case of toth holding if possitle. For
example,a contractor in a bid might stipulate elther x; > $10,000
or xy = O. 1If all bids are nonnesative 80 that Xy 2 0O, then we

can write

EITHER X, - 10,00C > O

From other considerations it may te known that no tid can exceed

$1,000,000 so that the set S of interest is C x; < 1,000,000.
We now assume that lower bounds for the functions 5 and

H sare known for all values of (xl,xg,---,xn) in 3. If L; 1s

a lower bound for G and LH for H then for 4= 1 the condition

(3) G(xl,x2,---,xn) -45L, 20

holds for all values of XysXoye o, Xy in 5. Similarly for

2’



£ a 0 the condition

(4) H(xl,xe,...,xn) = (s a)LH >0
holds for all values of (xl,xz,---,xn) in 5. For our example
we would have

X, = 10,000 — &(=10,000) 2 0
—x; = (1 = §)(~1,000,000) > © .

The either—or condition (1,2 ) cen now be replaced oy

(5) G(xl'x2""nxn) —éLG _>_ 0 (5- Ool)
(()) H(xloxgn”'oxn) = (1 - ;‘)LH Z C
(7) 0< a1l

where > 18 an intecer variatle. The effect of ~ =1 18 to relax
the G condition when H holds and of ~ = O 18 to relax i when G
heclds. If G and H are linear functions we have reduced the
elther—or condition to three simultaneocus linear inequslities
in wh'ch the variatle ~ must te O or 1,

A dichotomy can bte used to descrite an L-shaped re:icn
(non—convex ): for example,x; > 0, x, >0, x; < 2, X5 £ 2, and

either Xy <1or < 1. We replace this vy
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O'S Xy 5_1 + 5 //
O‘S xI.S 2 -0 -
008 <1 (6 = 0,1) ,

If now a prouvlem contains not one but several such pairs
of dichotomies (1) and (2), each one would be replaced by a

simultaneous set (5), (6), (7) in integer variatles 61.

(6) K-=fold Alternaiives: More senerslly suppose we

have 3 sét of conditlions

(U) Gl(xl’x2’.'°'x

v
O

n’
02(x13x2:"°:xn) Z 0

Op(xl’XQ’...’xh)

v
O

Suppose a solution is required in which at least k of the

conditicns must hold simultaneously. We replace this by

(9) Gy(x) =8, Ly
G‘(x) -0

v v
O o

2 L)

Gp(x) - bp Lb

v
O

where L, 1s the lower tound for 3{x) for x = (xl’x2'°°°'xn)
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in S and 5J are interer—valued variables satisfying

(10) Sy + Sy + sem 4o, =P -k

(11) 0¢d 1.

An example of this type of problem might occur if
one wishes to find the minimum over the shaded regions
described by G; 2 0, G, 2 0, G3 2 0 and at least two of
the conditions G, 2 0, G5 2 0, Gg 2 0 as in (12).

(12)
RUA)
G} 20 , ‘/\73
0o . 3 /
-7 /
0 w7 50520 4 A
6y 2 6520
3 - v Lo\
' - ~
N / .
G > ©
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(d) Selection from many pairs of regions: The six—pointed "Star

of David" rezion shown on the rizht in (12) can test te descrited
0y a dichotomy in which a point must bLe taken from one of two
trianzles. It 1s only when there are many such palirs to Le
chosen at the same time that the protlem tecomes si nificant.

In zeneral we might have several pairs of re,ions (Rl,Hi),
(H2,h:),---,(Rn,R;) and the solution point x must lie in elther
hy or Ri for each 1. For each pair R and F' we proceed as
follows. Let region [i Le descrited ¢y a set of inequalities
Gl(x) > 0, 32(x) > O,---,Gn(x) 2 O and K' by Hl(x) >0,

He(x) > O,...,Hn(x) > O. The condition that the point must ve

selected from either the first or second re,ion can be written

(13) Gy(x) = 6Ly > 0 Hy(x) = (1= 9)L; >0
Gg(x) - 3L, > 0 H2(x) - (1 - »)Lé >0
G (x) —oL >0 Ho(x) = (1 = L) > ©

0< “¢1, (»=0Corl)

where L, ,L! are lower bounds for G1 and Hi‘ The more general

s |
case of selection from several regions can be done by intro-

ducing several 5, as in (10) and (11).

(e) Discrete Variable Protlems: Suppose that a variable is

constrained to take one of several values: X, = 8) OT X3 = 85,..y,
or x, = &, and at the same time several other variables areas are
also constrained the same way. It would be a formidable task to

test all the combinations. Instead we replace each k-fold dichotomy by
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(14) X, = 8,2 +85, + 00+ aksk
(15) py + O, + e 4y =] nJ=Oor'1.

Similarly let x = (xl,x2,---,x ) repre..1t3 a vector which may

n
only take on specified vector values x = al or x = a‘ or

X = a)---. This may te replaced :,
(16) X = albl + aga‘ 4+ e 4 lkék
(17) S1 % oyt rr 4 Fym=l oy = Corl.

This device permits the replacement of a non-linear function
n \
= . b3 &= » = e o 0 14
FiJ FiJ(xJ) in a svstem 2ya1 FiJ(XJ) O for (1 1,2, ,m)
ty 8 sprinkling of representative values of xJ, say xJ - XS
where r = 1,2,...,k. In this case the vector 13 the set of
- r
values (FIJ,IEJ,.-.,AmJ) for some value Xy = Xy

(f) Non—Linear Objective Piroulems: Suppcse the objective

form can ve written
n
®1/6) , Jgi ¢J(xj) = z(Min)

where QJ 18 non-linear and non—convex. Let each ¢(x, te
approximated ¢, 8 troken line function. Ihese deflne a set

of intervals { = 1,-,...,k of width h1 and slopes 8, for the
approximating chords. We now define y, as the amount of over—

lap of the interval from O to x with interval 1. Then
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(19) X =y +Y, + cee 4y
and ¢$(x) is ziven spproximately by
(20) d(x) & by + 8,y + Bo¥, + cee 4 8Ly
where
(21) 0<y <hy 1 = 1,2,v,k.

In the case of convex ¢, the procedure is to replace x and
¢(x) by (19) end (20) and conditions (21). Here the slopes

are monotonically increasin’ sc that
() 8, < 8, < +e0 K 8.

For a fixed x, §(x) would be minimum if y; i8 chosen maximum;
then ,;iver y1 maximum, 8o that Yo naximum; etc. In other words
for the minimizing solution the y, are the overlap of the P
interval with the interval O to x and all is well.

Ho.ever 1f ¢(x) is not convex as in (27), then simple

replacement of x and ¢(x) would result for fixed x in yy with
smaller slopes teins maximized first. In this case the sezments
that comprise Yy would te disconnected and our approximation
for ¢(x) would no loncer te valid. In order to avold this we

impose the condition that
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(c3) EITHER h, —

OR = (

y1+l J

which implies that unless Yyq 18 maximum that Yi41 ™ O and 1.

Y4 18 max.mum then Yi41 > O 1s possitle., we rewrite this

condition
(k) EITHEKR yy =hy 20
S - Y14 2 0
and then replsace 1t formally vy
(c5) yy =hy = (=) o4 2¢C 1 =1,2,¢00,k = 1.
vy = ()= ) 20
0< »y g1l y = Oorl
upon substitution of t'>1 -] - 53. simplifies to
(N '
vy 20y 8§
|
Yoo S hesy B4
0<8) <1 (6 = 0,1)

'he atove procedure for the non—convex case was discusscd In
the paper cf Manne and Markowltz [ 6 |. lhe convex case will

ce found in (7] and [8].
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(/) iajtt})
T*\(aO'LO) [ ‘\T (aupbu)
| N / ' O(X)
(al,bl) / ~ E
\I_ {(ae.be) | \7(-5.n5)
by | | ; | .
| h1 : hd ;lB . hu ‘ h5 |
1€ - X — 3

A second method i1s worth notin. tased on (16). Any
point on the curve ®(x) can be represented as a wel -hted

averaze of two successive treakpoints. Hence we may replace

x and $(x) by

o

and then impose the conditions that all Ai = 0 except for one

palr Ay, Ay . For k = b tris may te expressed by
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where bi are inte er-valued verlables savisfyin .
(3C) e + 5] + O, 40, + O + 55 a1 (51 =C,1).

L

Indeed 1! will ve noted that when bl = 1 for some | = |
0

that the 1irequslitles Involvin: A and Ai +] are relaxed but
C

C

{
&

the remainder satisfy A, < O since thelr 5, = C Ly (30).

( ) Conditiconal Ccnstraints: Suppose x and y are functions

of several var.arles (xl,x,,...,xn) for which upper bcunds

Ux and lower tLounds Lx and Lv sare known. we wigl, to impose

condi!ticons 3uch 83
(31) x>0 =py >C.
we can write this as

(32) EITHEE x > 0, y > C

Ok X S C

which we rewrite as

(33, X > be

-'- . L

Vo200 y

x < (1 =2)u, (0= C,1y
where the first !nequallity !13 writ i (>, !'+stesad of (>

tecsau.se the condit'on v > C 13 sautcme ‘celly relaxed fcr

X = O ¢, selectin- A= 1.

we can now elscorste this to !mpcse condlticns such as
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(3%) x>0=>u)o0
x{0=>w)0

which may be written as

(35) x 25 L
u2 by L,
x < 82 R
w28, L,

81 + 86, =1 (8, = 0,1).

Por example, suppose in a T-period program we wish to
complete a specified work load by the earliest period possibdble.
let x, be the cummulative sum of activity levels from the tth
period thru the last period T, then we wish to arrange matters
so that X, = O for the smallest t. In this case we can define

for t =1, 2, ..., T
(36) 8, = 0 ——=) x, = 0

which we may rewrite

(37) x, { o U, o, = 0,1

where U, 18 an upper bound for x

t t’
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and determine Min 2 + ere

(30) £ =8 + 8 + -0 + &

. »
Findin a8 lobtel minimum ¢f a concave function . Sujpcse

the concave function 2 = Z(xl,xe,...,xn) is to be minimized over
8 e ion i, We shall assune '« convex {cr convenience here

notin- that the devices d'sc .ssed earl . er extend the dcmain to
the wide class expressiile ty eltner—cr conditlons. Wwe 3uppcse

tc 1¢ ‘tven 8frer suitatle crian e in verie.les in standsard

l!nea: pro remmin_; forn
(39) X = e x > C

where = 18 8 Iven nm x n matrix and e 8 _lven m—ccmponent vecuior,
This 13 Intrinslicelly 8 di1fficult prorlem cecause Lhe

concave functicon could have l1ocsl minlinga at many, indeed at

8ll the exireme pocints of

[rre concave funct.cn .. may re ‘!'ven explicitly or

te ‘lven Impliclitly. Por exsrple, suppcse vector y and Guantity
z for fixed x {3 Yven .;
(40 DA SR SRS ' y > C
z = ax — »in Ty
yIX
whe:e - gnd + pre ven m2.rice3 and , u, 8r.d .7 lven vec.crs.

it1s I8 the sttiaticen dlsc .ssed .n 're upplica'icn of these

* . 0 N ) Y
s grplica.ton developea jeointl. witn Priilip wclfe,
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methods to Solving Two Move Qames with Perfect Information
[9]. Here, however, we shall suppose that Z can reasonably
be approximated at all points x 1a1 R by the minimum Z of a

finite set of k tangent hyper—planes.

(41) Z =8, X + 835X, + 00 48, X — b (L = 1,2,...,k),

to the surface Z = Z(x). The problem reduces to choosing Min Z

where Z must satisfy at least one of the conditions

(42) Z - [a;1x) + 85X, + c0e 48X - bjJ 20

Z = [pzlx1 + A X, e 4B, X - b2] 20

[ L [ ] [ 4 L) [ ] L] * [ [ L] [ L] [ ] L .

2 - [agxy + appxy 4 ee 4 a X — b ] 20
which we may rewrite as

(43) 2= [:ailx1 + By Xy + ottt ainxn] D —-M b, (1 =1,2,...,k)

By + Byt tec + B = 1 (61 = 0 or 1)

where — M is some assumed lower bound for the differences; this
solution depends on the approximation by k hyper—planes of

the function Z = Z(x). The solution given in [9], for the

case where Z 18 given implicitly by (40), requires finding x, y,
Min z, and aux!liary variables 7 = (71"2"""m) and T4 20

for J = 1,2,...,n' satisfying



(44) Ex=e,F‘y-t‘+Ex,z=qx_5y
'F + - = ] '
Ty T Ny BJ J=1,2, ,N
t
EITHER | ny <0
OFR -yiso

where v = (vl,n?,...,mﬂ) is a row vector, FJ is the Jth column of

K BJ the Jth component of B.

FIXED CHARGE PROBLEM

Earlier we described a problem where a bidder required
that either the order x = 0 or x > a. In this and many other
problems there is an underlying notion of a fixed aharge that
is independent of the size of the order, In this ~ase x = a
represents the break-even point to the bidder. 1In general the

cost C 1s characterized by

n [kx+b iIf x>0
0, '.lo iIf x =0

where b 18 the fixed charge. We may write this in the form

(2) " = kx + Bt (6 = 0,1)

where x = 0 1f & = O which we impose by

(3) x < BU
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(4) 0<6<1 (6 = 0,1)

where U is some upper bound for x. A discussion of the fixed
charge problem including this device will be found in the paper

by Warren Hirsch and the author [10].

ITI. THE TRAVELING SALESMAN PROBLEM

We shall give two formulations of this well-known problem.

th

Let x“t = ] or O according to whether the t directed arc on

the route is from nodie 1 to node J or not. The conditions

(1) x -1 t=1,...,n
1% 14t
(2) v x“t=1 {1l 1,.¢e;n
ot
(3) L ox =1 J=1,2,...,n
g1 3¢
(%) X dyyXgy = 2 (Min)

express that (1) there 1s only one t'" qirected arc, (2) there
is one dirécted arc leaving node i, (3) there is only one
directed arc into node Jj, (4) the length of the tour is
minimum. It is not difficult to see that an intege= solution
to this system is a tour.

In the paper by Fulkerson, Johnson and the author the case
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of a symmetric distance diJ - dJi was formulated with only two
indices., Here xJi = x1J = 1 or Q ascording to whether the route
from 1 to J or from J to i1 was traversed at some time on a

route or not. The conditions

(5) zxij-g » J"].,Q,...,n
i

(6) )X di.jxij = z(Min)

express the condition that the sum of the number of

entries and departures from each node is two. These conditions

are not enough to characterize a tour even though the x“ are

restricted to be integers in the interval,

since sub-tours like

2
(8) 1 &
>
2

also satisfy the conditions. However i1f so-called loop con-—

ditions discussed in [5] 1like

(9) Xpp * Xpy + Xyy €2
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are imposed (in the same manner that cutting planes are
introduced as required) these will rule out integer solutions

which are not admissible.

IV, THE ORTHOGONAL LATIN SQUARE PROBLEM

A latin square consists of n sets of n objects (1),
(2),...,(n) assigned to a n x n square array so that no object
is repeated in any row or column. Two latin squares are

orthogonal such as

(1) (1) (2) (3) © (2) (3) (1)
(2) (3) (1) @ (1) (2) (3)
(3) (1) (2) © (3 (1) (2)

1f the n2 pairs of corresponding entries are all different.
It was conjectured by Fuler that there are no orthogonal latin
sqQuares for certain n. In spite of a great deal of research
by top notch mathematicians the case for n =10, for example,
has never been settled. It has teen suggested informally by
David Gale that the proposed method be tried in this area.

The formulation 1s straightforward and well known. Let
lekl = 0 or 1 according to whether the pair (1,J) 1s assigned
to row k column # or not. The condition that the pair is assigned

to only one location is given by
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(2) Y x

-— 1,J - 1'2'.00’no
k,$

1yg =1

The condition that at least one 1s assigned to each location

k, § 18:

(3) S Xygep = L
|

The conditions that i, J appear only once in the first and

second latin square respectively in column £ 18 given by

(u) jz‘; xiJk‘ =1, 1,‘ = 1,2,...,[1.
B‘;xidkl =1, Joalke = 2,256 .0,

Similarly, the conditions that 1 and J appear only once in the
first and second latin square respectively in row k is given by

:‘1, 1,:‘(’1,2,--..!‘,

(5) }; X4 skt

{%xijkt =1, J)‘ ‘1,2,...,!‘1.

It 18 interesting tc note that every pair of subscripts that
are possible out of four are summed to form the six sets of
n2 equations each. Por n = 10 there are 600 equations, which

are too many for a general linear programming code to handle
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at the present time. However with some short cuts introduced

it might be tractable in the near future.

V. POUR-COLORING A MAP (4if possible)

A famous unsolved problem 18 to prove or disprove that
any map in the plane can be colored using at most four colors
where no two regions that have a boundary in common (except
a point) have the same color. We shall give two ways to
constructively color a particular map if possible. This
does not contribute anything to a proof of the truth or
falsity of the conjecture except that an efficient way
for solving particular problems on an electronic computer may
provide a counter example,

Without difficulty it can be arranged (as below) so

: Red 7
Ycllowlk__ __¥< Blue
Black

\
N

that three regions have at most one poeint in common which
will be called a node. There will be, accordingly, three
directed arcs leading from any node i to other nodes J. It
is well known that if it possible to four-color a map then

(and this will be true conversely) it is possible to treat
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the nodes as cities and the arcs as routes between cities and
either be able to make a tour of all the cities or
to make a zZroup of mutually exclusive sub—-tours of the cities
.dn several even (sub—cycle) loops as below.

We may associate with each such even cycle sub-tour,
directed arcs that reverse their direction as we pass from

node to node

This means the nodes i1 can be classified into two classes:

those which have two arcs pointing away from them and those

that have two arcs pointing towards them. Let us set x1J =1 1if
an arc is part of a sub—tour in the direction of the arrow;

otherwise x1J = 0, Hence
(1) 0 < x4 <1,

It 1s understood that only arcs (1,J) and variables x4 are
considered corresponding to regions that have a boundary in
common. All arcs (1,J) that do not correspond to boundaries
are omitted in the constraints.

The conditions
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(2) S xyy = 20 (6, = 0,1)
J

express the fact there must be two arcs on some sub—tour
leading away from node i if 61 = ),otherwise there are none.

The conditions

(3) L xgy=2-—28
1

state there must be two arcs on some sub-tour leading into
node 1 1f 61 = 0, otherwise none. The three sets of conditions

(1), (2), (3) are those of a bounded transportation problem

and will te integers (at an extreme point) if 61 are integers,
This would seem to imply that it 1s only necessary to assume
that b1 are integers and the xU will come out automatically
integral in an extremizing solution without further assumptions.
However since the objective form 1is open to choice by choosing
it in a non—degenerate way it 1is clear that the extreme point
solution with integral x1J would be determined by the process.
A second formulaticn suggested informally by R, Gomory 1is
straightforward. Let the regions be r = 1,2,...,R and let

tr be an integer-valued variable such that

Ostr,_(_)p
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the four values t = 0,1,2,3 corresponding to the four colors.
If regions r and s have a baundary in common their colors

must be different. Hence for each such pair
(4) t.-t, ¥ 0.

This may be written in either—or form:

(5) EITHER t -t > 1

OR ts - tr 21
which we may rewrite

(6) t -ty > 1 =46 g 6rs = 0,1
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